Регистрация

Версия для слабовидящих
Детей не отпугнешь суровостью, они не переносят только лжи
Лев Николаевич Толстой
Сертификат владельца сайта
Сертификат владельца сайта http://www.kuksova-irina.ru/
Школа "Карьера"
Высшая школа делового администрирования
Общероссийский рейтинг сайтов школьной тематики-2018
Проголосуй за наш сайт
Оцените мой сайт





Результаты
счетчик посещений
Банк Интернет-портфолио учителей
Мир олимпиад
ФГОС урок
Сейчас на сайте: 26
Периодическая таблица
Таблица растворимости
Праздники сегодня

Установите себе наш баннер

Показать код баннера

Атомы, молекулы и ионы. Вещества молекулярного и немолекулярного строения.

Кристаллическое состояние веществ. Кристаллические решетки

Известно, что химия изучает вещества и их свойства. Для того чтобы объяснить почему то или иное вещество вступает или не вступает в химические процессы, нужно заглянуть внутрь его. Но атомы и молекулы, из которых состоят вещества, нельзя увидеть даже с помощью мощного микроскопа. Из материалов урока вы узнаете, как ученые-химики познавали и познают микромир, познакомитесь со следующими понятиями: "атом", "молекула", "вещества молекулярного и немолекулярного строения", "атомно-молекулярное учение".

I. Возникновение представлений об атомах и молекулах

Древнегреческий философ Демокрит 2500 лет назад высказал мысль о том, что все тела в природе состоят из мельчайших невидимых, непроницаемых, неделимых, вечно движущихся частиц – атомов. Слово “атом” в переводе означает “неделимый”. Позднее, в средние века, учение об атомах преследовалось религией, которая тормозила развитие науки в целом, и химии в частности.

Древ­не­гре­че­ский фи­ло­соф Ари­сто­тель пред­по­ло­жил, что ос­но­ву всего со­став­ля­ют 4 сти­хии: огонь, вода, воз­дух и земля. Эти сти­хии на­хо­дят­ся во вза­и­мо­свя­зи и вза­и­мо­дей­ствии. 

Ари­сто­тель счи­тал огонь, воду, воз­дух и землю неде­ли­мы­ми эле­мен­та­ми, ко­то­рые могут пре­вра­щать­ся друг в друга, а также со­еди­нять­ся друг с дру­гом, об­ра­зуя новые тела. Со­еди­не­ние эле­мен­тов с про­ти­во­по­лож­ны­ми свой­ства­ми счи­та­лось невоз­мож­ным: огонь не может со­еди­нить­ся с водой, а воз­дух с зем­лей.

Пред­по­ло­же­ние Ари­сто­те­ля было оче­вид­ным, по­это­му его пред­став­ле­ния вла­де­ли умами более ты­ся­чи лет. На­при­мер, мы знаем, что вода не горит. В со­от­вет­ствие с дан­ной мо­де­лью Ари­сто­тель счи­тал, что из од­но­го ве­ще­ства можно по­лу­чить любое дру­гое ве­ще­ство. Глав­ное – по­до­брать усло­вия его пре­вра­ще­ния.

Учение о молекулах и атомах было разработано в середине 18 века великим русским ученым Михаилом Васильевичем Ломоносовым (1711 – 1765 гг.) Он утверждал, что тела в природе состоят из корпускл (молекул), в состав которых входят элементы (атомы). Многообразие веществ ученый прозорливо объяснял соединением разных атомов в молекулах и различным расположением атомов в них. Удивительно верной и смелой для того времени была мысль М. В. Ломоносова о том, что некоторые корпускулы (молекулы) могут состоять из одинаковых элементов (атомов). Учение об атомах получило дальнейшее развитие в трудах известного английского ученого Джона Дальтона (1766 – 1844 гг.).

Это интересно

Как Демокрит представлял себе атомы?

Принято считать, что первым идею о том, что кажущаяся непрерывной материя на самом деле состоит из великого множества мельчайших и потому невидимых частиц, выдвинул древнегреческий философ Демокрит (V в. до н. э.). О жизни Демокрита нам, однако, практически ничего не известно, и оригинальные труды этого мыслителя до наших дней не дошли. Поэтому об идеях Демокрита остаётся судить в основном по цитатам из его работ, которые мы находим у других авторов, прежде всего у Аристотеля.

Логика рассуждений Демокрита была крайне проста. Представим, говорил он, что у нас есть самый острый в мире нож. Берём первый попавшийся под руку материальный объект и разрезаем его пополам, затем одну из получившихся половинок также разрезаем пополам, затем разрезаем пополам одну из получившихся четвертинок и так далее. Рано или поздно, утверждал он, мы получим частицу столь мелкую, что дальнейшему делению на две она не поддаётся. Это и будет неделимый атом материи. По представлениям Демокрита атомы были вечными, неизменными и неделимыми.

Идеи Демокрита не основывались ни на каких наблюдениях или практических опытах. Демокрит, подобно всем натурфилософам античности, просто рассуждал и делал умозрительные заключения относительно природы мира.

II. Молекулы и атомы

Фильм: “Молекула. Атом. Вещество”

Можно ли опытным путем доказать, что молекулы состоят из атомов?

То, что атомы действительно существуют, подтверждают многие химические реакции. Так, например, при пропускании постоянного тока через воду в одной из трубок прибора собирается газ, в котором тлеющая лучинка ярко вспыхивает. Это кислород. В другой трубке собирается вдвое больше газа, который от зажженной лучинки загорается. Это водород. 

Объяснить это явление можно так. Мельчайшая частица воды – молекула состоит из 2 атомов водорода и одного атома кислорода. При пропускании постоянного тока через воду ее молекулы распадаются и образуются химически неделимые частицы – атомы кислорода и водорода. Затем атомы соединяются по два, и из двух молекул воды образуется одна – двухатомная молекула кислорода и две водорода.

Некоторые представления об атомах и молекулах, высказанные М. В. Ломоносовым за полвека до Д. Дальтона, оказались более достоверными и научными. Например, английский ученый категорически отрицал возможность существования молекул, состоящих из одинаковых атомов. Его взгляды отрицательно сказались на развитие химии. Учение о молекулах и атомах окончательно было принято только в 1860 г. на Всемирном съезде химиков в Карлеруэ.

Молекулы – мельчайшие частицы вещества, состав которых и химические свойства такие же, как у данного вещества. Молекулы – предельный результат механического дробления вещества.

Атомы – это мельчайшие химически неделимые частицы, из которых состоят молекулы. Молекулы, в отличие от атомов, являются химически делимыми частицами.

III.  Вещества молекулярного строения

Молекулярные вещества - это вещества, мельчайшими структурными частицами которых являются молекулы

Молекулы - наименьшая частица молекулярного вещества, способная существовать самостоятельно и сохраняющая его химические свойства.

Молекулярные вещества имеют низкие температуры плавления и кипения и находятся в стандартных условиях в твердом, жидком или газообразном состоянии.

Например: Вода - жидкость, t пл=0°С; t кип=100°С

Вода – самое известное и весьма распространенное вещество на нашей планете: поверхность Земли на 3/4 покрыта водой, человек на 65 % состоит из воды, без воды невозможна жизнь, так как в водном растворе протекают все клеточные процессы организма. Вода – молекулярное вещество. Это одно из немногих веществ, которое в природных условиях встречается в твердом, жидком и газообразном состояниях, и единственное вещество, для которого в каждом из этих состояний есть свое название. 
Особенностями строения воды вызваны ее необычные свойства. Например, при замерзании вода увеличивается в объеме, поэтому лед плавает в своем расплаве – жидкой воде, а наибольшая плотность воды наблюдается при 4 oС, поэтому зимой большие водоемы до дна не промерзают. На свойствах воды основана и сама шкала температур Цельсия (0 o – температура замерзания, 100 o – температура кипения). С причинами этих явлений и с химическими свойствами воды вы познакомитесь позже.

Примеры веществ молекулярного строения: водород, кислород, углекислый газ, этиловый спирт, ацетон, вода.

IV. Вещества немолекулярного строения

Немолекулярные вещества - это вещества, мельчайшими структурными частицами которых являются атомы или ионы.

Ион - это атом или группа атомов, обладающих положительным или отрицательным зарядом.

Например: Na+, Cl-.

Немолекулярные вещества находятся в стандартных условиях в твердом агрегатном состоянии и имеют высокие температуры плавления и кипения.

Например: Поваренная соль - твердое вещество, tпл=801°С; tкип=1465°С.

Железо – серебристо-белый, блестящий, ковкий металл. Это немолекулярное вещество. Среди металлов железо занимает второе место после алюминия по распространенности в природе и первое место по значению для человечества. вместе с другим металлом – никелем – оно образует ядро нашей планеты. Чистое железо не имеет широкого практического применения. Знаменитая Кутубская колонна, расположенная в окрестностях Дели, высотой около семи метров и весом 6,5 т, имеющая возраст почти 2800 лет (она поставлена в IX в. до н. э.) – один из немногих примеров использования чистого железа (99,72 %); возможно, что именно чистотой материала и объясняется долговечность и коррозионная устойчивость этого сооружения. 

Примеры веществ немолекулярного строения: алмаз, графит, металлы, соли.

V. Строение вещества

В химические взаимодействия вступают не отдельные атомы или молекулы, а вещества. Наша задача познакомиться со строением вещества.

Если рассматривать общую совокупность планеты и космоса, то большая часть веществ и тел все же находится в состоянии газа и плазмы. Однако на самой Земле существенно и содержание твердых частиц. Вот о них мы и поговорим, выяснив, чем являются кристаллические и аморфные твердые тела. 

 

 

 

 

 

 

 

Все твердые вещества, тела, предметы условно подразделяются на: кристаллические и аморфные. Разница между ними огромная, ведь в основе подразделения лежат признаки строения и проявляемых свойств. Если говорить кратко, то твердыми кристаллическими именуются те вещества и тела, которые имеют определенный тип пространственной кристаллической решетки, то есть обладают способностью изменяться в определенном направлении, но не во всех (анизотропия).

Если же характеризовать аморфные соединения, то первый их признак - способность менять физические характеристики по всем направлениям одновременно. Это называется изотропией. Строение, свойства кристаллических и аморфных тел совершенно различны. Если первые имеют четко ограниченную структуру, состоящую из упорядоченно расположенных частиц в пространстве, то у вторых всякий порядок отсутствует. 

При низких температурах для веществ устойчиво твёрдое состояние.

 Самым твёрдым веществом в природе является алмаз. Он считается царём всех самоцветов и драгоценных камней. Да и само его название означает по-гречески «несокрушимый». На алмазы с давних пор смотрели как на чудодейственные камни. Считалось, что человек, носящий алмазы, не знает болезней желудка, на него не действует яд, он сохраняет до глубокой старости память и весёлое расположение духа, пользуется царской милостью.

☼ Алмаз, подвергнутый ювелирной обработке – огранке, шлифовке, называют бриллиантом.

При плавлении в результате тепловых колебаний порядок частиц нарушается, они становятся подвижными, при этом характер химической связи не нарушается. Таким образом, между твёрдым и жидким состояниями принципиальных различий нет.

У жидкости появляется текучесть (т. е. способность принимать форму сосуда).

Свойства твердых тел

Кристаллические и аморфные тела тем не менее относятся к единой группе твердых, а значит, обладают всеми характеристиками данного агрегатного состояния. То есть общими свойствами для них будут следующие: Механические - упругость, твердость, способность к деформации. Тепловые - температуры кипения и плавления, коэффициент теплового расширения. Электрические и магнитные - проводимость тепловая и электрическая. Таким образом, рассматриваемые нами состояния обладают всеми данными характеристиками. Только проявляться у аморфных тел они будут несколько иначе, нежели у кристаллических. Важными свойствами для промышленных целей являются механические и электрические. Способность восстанавливаться после деформации или, напротив, крошиться и измельчаться - важная особенность. Также большую роль играет тот факт, может вещество проводить электрический ток либо не способно к этому. 

Разница между аморфными и кристаллическими веществами огромная, ведь в основе подразделения лежат признаки строения и проявляемых свойств.

Строение, свойства кристаллических и аморфных тел совершенно различны. Если первые имеют четко ограниченную структуру, состоящую из упорядоченно расположенных частиц в пространстве, то у вторых всякий порядок отсутствует

VI. Жидкие кристаллы

    Жидкие кристаллы открыты в конце XIX века, но изучены в  последние 20-25 лет. Многие показывающие устройства современной техники, например некоторые электронные часы, мини-ЭВМ, работают на жидких кристаллах.

    В общем-то слова «жидкие кристаллы» звучат не менее необычно, чем «горячий лёд» . Однако на самом деле и лёд может быть горячим, т.к. при давлении более 10000 атм. водяной  лёд  плавится при температуре выше 2000 С. Необычность сочетания «жидкие кристаллы» состоит в том, что жидкое состояние указывает на подвижность структуры, а кристалл предполагает строгую упорядоченность.

    Если вещество состоит из многоатомных молекул вытянутой или пластинчатой формы и имеющих несимметричное строение, то при его плавлении эти молекулы ориентируются определённым образом друг относительно друга (их длинные оси располагаются параллельно). При этом молекулы могут свободно перемещаться параллельно самим себе, т.е. система приобретает свойство текучести, характерное для жидкости. В то же время система сохраняет упорядоченную структуру, обусловливающую свойства, характерное для кристаллов.

    Высокая подвижность такой структуры даёт возможность управлять ею путём очень слабых воздействий (тепловых, электрических и др.), т.е. целенаправленно изменять свойства вещества, в том числе оптические, с очень малыми затратами энергии, что и используется в современной технике.

    Это интересно

    Одно и то же вещество может встречаться и в кристаллическом и в некристаллическом виде. В жидком расплаве вещества частицы движутся совершенно беспорядочно. Например, расплавить сахар: если расплав застывает медленно, спокойно, то частицы собираются в ровные ряды и образуются кристаллы. Так получается сахарный песок или кусковой сахар. Если остывание происходит очень быстро, то частицы не успевают построиться правильными рядами и расплав затвердевает некристаллическим. Так, если вылить расплавленный сахар в холодную воду или на очень холодное блюдце, образуется сахарный леденец, некристаллический сахар.

    Вывод: Аморфное тело ведёт себя как очень густая и вязкая жидкость.   При низких температурах они ведут себя подобно кристаллическим телам, а при высокой подобны жидким.

    VII. Типы кристаллических решёток

    Любое химическое вещество образованно большим числом одинаковых частиц, которые связаны между собою.

    При низких температурах, когда тепловое движение затруднено, частицы строго ориентируются в пространстве и образуют кристаллическую решётку.

    Кристаллическая решетка – это структура с геометрически правильным расположением частиц в пространстве. 

    В самой кристаллической решетке различают узлы и межузловое пространство.

    Одно и то же вещество в зависимости от условий (p, t,…)  существует в различных кристаллических формах (т.е. имеют разные кристаллические решетки) – аллотропных модификациях, которые отличаются по свойствам.

    Например, известно четыре модификации углерода – графит, алмаз, карбин и лонсдейлит.

    ☼ Четвёртая разновидность кристаллического углерода «лонсдейлит» мало кому известна. Он обнаружен в метеоритах и получен искусственно, а строение его ещё изучается.

    ☼ Сажу, кокс, древесный уголь относили к аморфным полимерам углерода. Однако теперь стало известно, что это тоже кристаллические вещества.

    ☼ Кстати, в саже обнаружили блестящие чёрные частицы, которые назвали «зеркальным углеродом». Зеркальный углерод химически инертен, термостоек, непроницаем для газов и жидкостей, обладает гладкой поверхностью и абсолютной совместимостью с живыми тканями.

    ☼ Название графита происходит от итальянского «граффитто» - пишу, рисую. Графит представляет собой тёмно – серые кристаллы со слабым металлическим блеском, имеет слоистую решётку. Отдельные слои атомов в кристалле графита, связанные между собой сравнительно слабо, легко отделяются друг от друга.

     

     

     

     

     

     

     

     

     

     

    Таблица: Свойства веществ с различной кристаллической решёткой

    Если скорость роста кристаллов мала при охлаждении – образуется стеклообразное состояние (аморфное). 

    Взаимосвязь между положением  элемента в Периодической системе и кристаллической решёткой его простого вещества

    Между положением элемента в периодической системе и кристаллической решёткой его соответствующего простого вещества существует тесная взаимосвязь.

    Простые вещества остальных элементов имеют металлическую кристаллическую решётку.

    Атомная кристаллическая решётка — это кристаллическая решётка, в узлах которой находятся отдельные атомы. 

    Примером может служить алмаз — одна из модификаций углерода. Алмаз состоит из атомов углерода, каждый из которых связан с четырьмя соседними атомами.

    Число веществ с атомной кристаллической решеткой велико. Все они имеют высокую температуру плавления, не растворимы в жидкостях, обладают высокой прочностью, твердостью, имеют широкий диапазон электропроводимости (от изоляторов и полупроводников до электронных проводников). Атомная кристаллическая решетка характерна для элементов III и IV групп главных подгрупп (Si, Ge, B, C).

    Ионная кристаллическая решётка образована ионами, связанными друг с другом электростатическим взаимодействием.

    Такая кристаллическая решётка характерна, например, для поваренной соли — хлорида натрия.

    Вещества с ионной кристаллической решеткой обладают высокой твердостью, хрупкостью, являются тугоплавкими и малолетучими. Плавление ионных кристаллов приводит к нарушению геометрически правильной ориентации ионов относительно друг друга и ослаблению прочности связи между ними. Поэтому расплавы, растворы таких кристаллов проводят электрический ток. Вещества с ионными кристаллическими решетками легко растворяются в полярных жидкостях, являются диэлектриками. 

    Молекулярная кристаллическая решётка — это кристаллическая решётка, в узлах которой находятся молекулы какого–либо вещества.

    Вещества с молекулярной решеткой имеют малую твердость и низкие температуры плавления. Они малорастворимы в воде, не проводят электрический ток и обладают высокой летучестью. Примерами веществ с молекулярными решетками являются лед, твердый углекислый газ («сухой лед»), твердые галогенводороды, твердые простые вещества, образованные одно- (благородные газы), двух- (F2, Cl2, Br2, J2, H2, N2,O2), трех- (O3), четырех- (P4), восьми- (S8) атомными молекулами. Большинство кристаллических органических соединений также имеют молекулярную решетку.

     

    VIII. Закрепление

    Задание №1. Какой тип кристаллической решётки у следующих широко используемых в быту веществ: вода, уксусная кислота (CH3COOH), сахар (C12H22O11), калийное удобрение (KCl), речной песок (SiO2) – температура плавления 1710 0C, аммиак (NH3), поваренная соль? Сделайте обобщённый вывод: по каким свойствам вещества можно определить тип его кристаллической решётки?

    Задание №2. По формулам приведённых веществ: SiC, CS2, NaBr, C2H2  - определите тип кристаллической решётки (ионная, молекулярная) каждого соединения и на основе этого опишите физические свойства каждого из четырёх веществ. 

    IX. Тренажеры

    Тренажёр №1.  "Кристаллические решётки"

    Тренажёр №2. "Тестовые задания"

    X. Выполните тест

    ЦОРы
     
     
    Видео презентация: Кристаллические решетки
     
     
     
     
    Домашнее задание
    1. Параграфы 7,8.
    2. Выполните тест